The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes.
نویسندگان
چکیده
Lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes represent a group of rare genetic disorders of HDL metabolism that have been the subject of a large number of clinical, biochemical, and genetic studies. Of special interest are patients with LCAT-related disorders with severe HDL deficiency and the apparent absence of premature atherosclerosis. This finding is inconsistent with the general concept that low HDL cholesterol levels are an obligate risk factor for atherosclerosis. In this review, we describe 36 natural mutations in the LCAT gene that result in either familial LCAT deficiency (FLD) or the milder phenotype known as fish-eye disease (FED). We propose a new classification of the natural mutations of the LCAT gene that are described to date. The defects are divided into four classes based on both the clinical and biochemical characterization of the patient and data that were obtained from the functional assessment of the mutant proteins. We define FLD-associated mutations that underlie a complete or nearly complete loss of LCAT activity due to null mutations (Class 1), and missense mutations (Class 2), respectively. In addition, we distinguish two classes of FED-associated mutations (Classes 3, 4) that underlie a partial impairment of LCAT activity but differ in their lipoprotein substrate specificity. In addition, we review the evidence of atherosclerosis in subjects with LCAT deficiency syndromes. The observation that 6 (all males) of a total of 19 FED subjects suffered from premature CAD (as defined by < 55 years of age and < 60 years of age for women and men, respectively) challenges the earlier assumption that the FED phenotype is not associated with increased risk of CAD. However, premature CAD remains an unusual clinical complication in FLD subjects.
منابع مشابه
Structure and function of lysosomal phospholipase A2 and lecithin:cholesterol acyltransferase
Lysosomal phospholipase A2 (LPLA2) and lecithin:cholesterol acyltransferase (LCAT) belong to a structurally uncharacterized family of key lipid-metabolizing enzymes responsible for lung surfactant catabolism and for reverse cholesterol transport, respectively. Whereas LPLA2 is predicted to underlie the development of drug-induced phospholipidosis, somatic mutations in LCAT cause fish eye diseas...
متن کاملLecithin:Cholesterol Acyltransferase Activation by Sulfhydryl-Reactive Small Molecules: Role of Cysteine-31.
Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine...
متن کاملThe molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families.
OBJECTIVE To better understand the role of lecithin:cholesterol acyltransferase (LCAT) in lipoprotein metabolism through the genetic and biochemical characterization of families carrying mutations in the LCAT gene. METHODS AND RESULTS Thirteen families carrying 17 different mutations in the LCAT gene were identified by Lipid Clinics and Departments of Nephrology throughout Italy. DNA analysis...
متن کاملEffects of natural mutations in lecithin:cholesterol acyltransferase on the enzyme structure and activity.
A molecular model was built for human lecithin:cholesterol acyltransferase (LCAT) based upon the structural homology between this enzyme and lipases (Peelman et al. 1998. Prot. Sci. 7: 585-597). We proposed that LCAT belongs to the alpha/beta hydrolase fold family, and that the central domain of LCAT consists of a mixed seven-stranded beta-pleated sheet with four alpha-helices and loops linking...
متن کاملFamilial lecithin:cholesterol acyltransferase deficiency. Biochemistry of the cornea.
Opacification of the cornea from lipid accumulation is an early and characteristic feature of familial lecithin:cholesterol acyltransferase (LCAT) deficiency. Visual impairment in a female age 48 years led to keratoplasty and the first detailed analysis of cornea in this disorder. Multilaminar figures were present, and total lipid extracts were enriched with phospholipid and cholesterol; choles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 38 2 شماره
صفحات -
تاریخ انتشار 1997